【定理2】 2^n ($n=1,2,3,\cdots$)の循環部分について,さらに次が成り立つ.

(性質4)性質3において,下k桁($k \ge 2$)について考えたとき,最高位の数が0,1,2,3,4,5,6,7,8,9のものはそれぞれ $2 \cdot 5^{k-2}$ 個ある.

(性質5)下k桁の循環部分の和は $2^{k+1} \cdot 5^{2k-1}$ である.

性質5の例:

k=1 のとき $2^2 \cdot 5 = 20$

k=2 のとき $2^3 \cdot 5^3 = 1000$

k=3 のとき $2^4 \cdot 5^5 = 50000$ などとなる.この結果は Excel で確認できる.

(証明)(性質4)について

循環周期は 4.5^{k-1} であったが、これの内訳をさらに考える.ただし $k \ge 2$.

循環部分は 2^k の整数倍であった。この下 1 桁は 0 ではない。(下 1 桁は 2,4,8,6 の繰り返しであることは $32\equiv 2\pmod{10}$)よりわかる。

まず、 2^k の整数倍の個数は $2^k \cdot 1, 2^k \cdot 2, \cdots, 2^k \cdot (5^k - 1)$ の $5^k - 1$ 個である.なぜなら下 k 桁で考えているため、考えている範囲は0以上 10^k 未満であるからである.

このなかで下1位が0のものは

 $2^{k} \cdot 5 \cdot 1, 2^{k} \cdot 5 \cdot 2, 2^{k} \cdot 5 \cdot 3, \dots, 2^{k} \cdot 5 \cdot (5^{k-1} - 1)$ の $5^{k-1} - 1$ 個である.

したがって 2^k の整数倍から 2^k の整数倍で下1位が0 のものを除くと,その個数は $(5^k-1)-(5^{k-1}-1)=4\cdot 5^{k-1}$ である.

これは循環周期に等しいので,循環部分は

「 2^k の整数倍から 2^k の整数倍で下1位が0 のものを除いた数である」ということがわかった.・・・・②(これらすべてで構成されているということである)

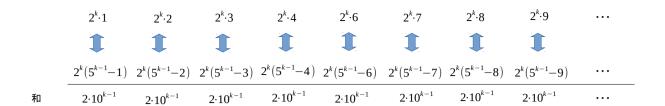
(図1 循環部分)

2 ^k ·1	2 ^k ·2	2 ^k ·3	$2^k \cdot 4$	2 ^k ·5·1
2 ^k ·6	2 ^k ·7	2 ^k ·8	2 ^k ·9	2 ^k ·5·2
•••				
•••	•••		•••	$2^{k} \cdot 5 \cdot (5^{k-1} - 1)$
$2^{k} \cdot (5^{k} - 4)$	$2^{k} \cdot (5^{k} - 3)$	$2^{k} \cdot (5^{k} - 2)$	$2^{k} \cdot (5^{k} - 1)$	2 ^k ·5 ^k

現われない

次に、この循環部分(2^k の整数倍から 2^k の整数倍で下1位が0のものを除いた数、すなわち $2^k \cdot 5^1, 2^k \cdot 5^2, \cdots, 2^k \cdot 5^{k-1}$ を除いたもの)の一部分 $2^k \cdot 1, 2^k \cdot 2, 2^k \cdot 3, \cdots, 2^k \cdot (5^{k-1} - 1)$ に着目する. (図2の1行目)

これは初項と末項,第2項と第 $5^{k-1}-2$ 項,・・・・というように組んで和を考えると,その和は常に一定の $2^k \cdot 5^{k-1} = 2 \cdot 10^{k-1}$ であることに注意する、この一定の和の第k位は2である。



末項 $2^k \cdot (5^{k-1}-1)$ の第 k 位は 1 である.末項から項番号を小さくしていくと,いずれは第 k 位は 0 になる.また,同様に考えて,初項の第 k 位は 0 であるが,項番号が大きくなると,いずれは第 k 位が 1 になっていく.しかし,初項と末項,第 2 項と第 $5^{k-1}-2$ 項,・・・・というように組んで和を考えたものが一定の値になり,その第 k 位が 2 であることを考えると,第 k 位が 0 のものと 1 のものは同数あるということになる. (つまり第 k 位=最高位は 2 だから,1・・・・・と0・・・・・・を加えて 2・・・・・= $2^k \cdot 5^{k-1} = 2 \cdot 10^{k-1}$ になるということである.このようなことがすべてのペアについて言えるというわけである.)

同様に考えて、さらに $2^k \cdot 5^{k-1}$ を加えて考えると、

 $2^k \cdot (5^{k-1}+1)$, $2^k \cdot (5^{k-1}+2)$, \cdots , $2^k \cdot (2 \cdot 5^{k-1}-1)$ の初項と末項,第2項と第 $5^{k-1}-2$ 項, \cdots の和は一定の値 $6 \cdot 10^{k-1}$ で,第 k 位は 6 である. 末項の第 k 位は 3 で初項の第 k 位は 2 であるから, $3 \cdot \cdots \cdot k \cdot 2 \cdot \cdots \cdot k \cdot 3$ のものと 2 のものは同数あるということを示している.

以下同様にして

(第k位が0のものの個数) = (第k位が1のものの個数) = (第k位が2のものの個数) =・・・= (第k位が9のものの個数)

となっていて、それらは $4.5^{k-1} \div 10 = 2.5^{k-2}$ 個ずつあることになる.

(図2 循環部分)

2 ^k ·1	 $2^{k}(5^{k-1}-1)$	$2^{k} \cdot 5^{k-1}$	←第k位が0のものと1のものが同数ある
$2^{k}(5^{k-1}+1)$	 $2^{k}(2\cdot 5^{k-1}-1)$	$2^{k+1} \cdot 5^{k-1}$	ー第k位が2のものと3のものが同数ある
$2^{k}(2\cdot 5^{k-1}+1)$	 $2^{k}(3\cdot5^{k-1}-1)$	$2^{k} \cdot 3 \cdot 5^{k-1}$	←第k位が4のものと5のものが同数ある
$2^{k}(3\cdot5^{k-1}+1)$	 $2^{k}(4\cdot5^{k-1}-1)$	$2^{k} \cdot 4 \cdot 5^{k-1}$	←第k位が6のものと7のものが同数ある
$2^{k}(4\cdot5^{k-1}-1)$	 $2^{k} \cdot (5^{k} - 1)$	2 ^k ·5 ^k	ー ←第k位が8のものと9のものが同数ある
		↑現われない	-

(性質5)について

②から循環部分の和は

$$2^{k} \cdot \left\{ 1 + 2 + \dots + (5^{k} - 1) \right\} - 2^{k} \cdot 5 \cdot \left\{ 1 + 2 + \dots + (5^{k-1} - 1) \right\}$$

$$= 2^{k} \cdot \frac{1}{2} \cdot (5^{k} - 1) \left\{ 1 + (5^{k} - 1) \right\} - 2^{k} \cdot 5 \cdot \frac{1}{2} \cdot (5^{k-1} - 1) \left\{ 1 + (5^{k-1} - 1) \right\}$$

$$= 2^{k+1} \cdot 5^{2k-1}$$

となる.これは k=1 のときも成り立つ.(終)

以上を踏まえて,次のような一般化を考えた.